COMPRESSION CURVE OF A FIBROUS COMPOSITE

S. T. Mileiko and A. A. Khvostunkov UDC 539.3

Results are presented of an experimental investigation of a single~directional fibrous com-
posite under compression in the bonding direction. The buckling modesare detected: the cus-
tomary bending and a shear mode which holds for comparatively low sample flexibilities.

1. An experimental determination of the mechanical properties of materials under compression has
a number of peculiarities which sometimes make obtaining reliable results difficult. Firstly, the compara-
tively short working length of the sample makes the stress state far from uniform, and measurement of the
displacements less reliable than in the case of tension. An increase in the working length results in sample
buckling. Additional peculiarities can appear in the compression of fibrous materials,

Firstly, the buckling of the system of bonding fibers in the matrix is possible. An energy stability
criterion is applied in [1] to a plane model of a composite, and it is shown that for low armature concentra-
tions, buckling of the system of rigid bounding planes is energetically suitable such that any two adjacent
planes buckle out of phase, tension—compression in a direction perpendicular to the fundamental compres-
sion is imposed on the fundamental stress state of the matrix, As the percentage of bonding increases, buck-
ling of the bonding system in one phase becomes more favorable, hence, shear is imposed on the fundamen-
tal state of the matrix. Practically the same result has been obtained in [2] by using a static criterion. The
cophasal buckling mode should apparently be more characteristic for ordinary combinations of the proper-
ties of the components and the magnitudes of the volume fractions of the armature. An expression for the
critical stress in the bonding element has been obtained for this case in [1, 2],

S, = Tv"nm— (1.1)
where G is the shear modulus and v the volume fraction of the component. (Here and below the subscript £
refers to the armature, the subscript m and the double prime to the matrix, while the quantities without sub-
scripts or primes are averages referring to the composite as a whole.)

No rigorous experimental verification of (1.1) has apparently been made since reconstruction of the
test model and conditions used in the test in [1, 2] is difficult. A comparison between the experimental re-
sults in [3] and (1.1) is not justified since the stresses it yields simply cannot be realized by the armature
used in [3]. The test conditions of aluminum samples bonded with a stainless wire and the buckling mode
observed in [4] are not perfectly clear, and the authors' interpretation of their results is arbitrary to a sig-
nificant degree.

Secondly, growth of the initial imperfections of the armature [5] occurs under compression, which re-
sults in a diminution of the effective elastic modulus of the composite.

The main idea used in the experiments following below is that the samples in the compression tests-
should be considered as a certain structure. But it is expedient to vary some structural parameter in study-
ing the structure, the flexibility, say, in the case of a compressed rod. As will be shown below, this will re-
sult in a natural determination of the material.

2. Several years ago, Yu. N. Rabotnov expressed the idea about the expediency of determining the tan-
gential modulus of a material under compression from experiments on the stability of rods. Indeed, experi-
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TABLE 1 ments yield critical loads close to the quantities obtained by

the tangential modulus formula [6]. Therefore, compression
i l °mkg/mm2~ 2 Ei10"kg/mm? testing rods of diverse flexibility under fixed support conditions
and then determining the tangent modulus as a function of the
g:g%g% 1‘3:3 8;3??, Z;;%E stress can reproduce the strain curve under compression when
0.0421 24.3 - 5.56 the dependence obtained is integrated. The degree of corre-
0.0562 30.9 — 3.99 . .
0.0843 35.3 — 1.65 spondence between this g—¢ curve and the true compression
curve will be the same as the degree of correspondence be-
tween the tangential modular load and the actual critical load
40) T of the compressed rod. But it should be noted that using the
6 kg/mm? compressgion characteristics of the material requires namely
/ its tangent modulus in many cases, and numerical differentia-
7 V tion of the experimental ¢ —¢ dependence is, as a rule, fraught
/ with great errors.
20 Thus, a homogeneous (or quasi-homogeneous) rod of
/ length 1 is compressed by an increasing stress g. According
0 to Shanley, the rod buckling will occur at the stress
(e e
, &% _
01 o4 o5 Here i is the minimal radius of inertia of a rod section,
Fig, 1 u is a coefficient dependent on the rod support conditions, and
Ey is the tangential modulus of the rod material at the stress

Ty
Rigid framing of .the rod with small deviations from the rectilinear can be realized comparatively eas-

ily in experiment by compressing the sample with flat endfaces perpendicular to its axis between plane—par-
allel slabs,

Indeed, a d=16.84 mm diameter bar of D16T was compressed in this manner in preliminary tests. If
the elastic modulus is taken as E =7,1-10% kg/mm?, then the values of u obtained in the first two rows of the
table can be considered to correspond to rigid framing (1 =0.5). Values of the tangent modulus Eg, taking
into account u =0.5, are determined in the last column of this table. After interpolation and integration, the
compression curve (Fig. 1) of the tested duraluminum, whose yield point under tension is ~ 55 kg/mm?, is
constructed from these data. (The dashes are given in the table since the tangent modulus is known to be
less than the elastic modulus in the appropriate lines.)

3. The subject investigated herein is an aluminum—stainless steel wire composite. Aluminum A5
aluminum foil was used as matrix, and chromium—nickel wire* of the armature had a 0.11 mm diameter
and tension yield point of ~ 240 kg/mm?. The method of producing the composite was by diffusion welding
in a vacuum. The welding regime was 525°C temperature, 3 kg/mm? pressure for 30 min, and a vacuum on .
the order of 5-107° torr. After the original wire had been heated in the welding regime its strength dropped
negligibly and was ~ 230 kg/mm?. The billet under welding was obtained by winding the wire on a layer of
foil, where the relationships between the wire diameter, the foil spacing, and thickness were selected for a
given bonding percentage vr soas to obtain a uniform, almost hexagonal armature distribution in cross sec-
tion. Examples of the wire distributions obtained in the composite cross sections are shown in Fig, 2a (for
a volume fraction vE = 0.095) and in Fig.2b (Vf= 0.440). The dimensions of the card obtained after welding

were 2 x 35 x 100 mm?®,

The samples were cut on an electric spark tool with subsequent careful grinding of the side surfaces
and endfaces in order to assure their mutual perpendicularity. The average size of a sample cross section
was 2 x 6 mm? The ratio 1/h of the length to the thickness of the samples varied between 4 and 50. The

samples were tested on a ZD-40 machine with a ~ 2 kg/mm?- sec loading rate.

4. Three buckling modes were observed. The ordinary bending mode is characteristic for samples
with high flexibility (Fig. 3a). As the flexibility decreases, the nature of the buckling changes, the sample

* The wire was obtained from the laboratory of the A. A. Klekovkin Belorets Metallurgical Combine.
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snaps with the formation of steps in whose zone shear occurs in the material of the ma-
trix (Fig. 3b). The shear is localized at the sample enface (Fig. 3c) in still shorter sam-
ples.

The dependence of the critical stress ¢, on the parameter 3/h which characterizes
the sample flexibility, is presented in Fig. 4. The points 1, 2, 3 in Fig. 4a correspond
to the volume fractions v,.=0, 0.095, and 0.305. The points 4, 5, 6 in Fig. 4b correspond
to the volume fractions 0,058, 0.215, and 0.440. The open circles refer to the bending
buckling mode, the dark circles to the shear mode, and the lined circles to shear at the
endfaces. The passage from the bending mode to the shear mode occurs for greater val-
ues of 1/h, the smaller the magnitude of the volume fraction V.

-

4
Let us first examine just those results which refer to the bending buckling mode.
r Assuming the sample quasi-uniform, let us consider (2.1) to be valid. ILet us also as-
o

sume that the strain curve of the composite in that section where there are still no lo-
calized zones of the kind shown in Figs. 4b and c is obtained by the simple rule of mix~
Fig. 7 tures, i.e.,

a

6 = 0'vs |+ 0"y 4.1)

where ¢' and ¢" are functions of the strains g =¢'=¢", characteristic for the fiber and matrix under uniaxial
loading. This means that the influence of normal stresses is not taken into account here in planes perpen-
dicular to the sample axis, which are on the order of the square of the difference between the Poisson ratios
of the components [7], and the influence of the armature on the plastic properties of the matrix, noted in [8],
for example,* is neglected. The first assumption is justified by the smallness of the corrections obtained,
as is illustrated by calculations of the appropriate elastic moduli. The second assumption apparently does
not roughen the real picture since the diameter of the bonding fibers is sufficiently large in this case, in
contrast to [8].

Now, using (2.1) and the data presented in Fig. 3, let us construct the dependence of El‘{i onthe stregses
for the matrix. Letus take E=7.1-10% kg/mm? as the elastic modulus of the matrix (the point ¢=0). Inte-
grating

E
5 =B 0

we find the strain curve of the matrix under compression (Fig, 5, curve 1). Furthermore, in these same
Eﬁi—q coordinates, let us superpose experimental points for the composite vy =0.095 (Fig. 6). We deter-
mine the initial part of the curve (solid line) by means of (4.1) by taking the matrix compression curve ob-
tained and an elastic wire with the modulus E =2.1 - 10* kg/mm?, Starting with g=8 kg/mm?, let us integrate
numerically and reproduce the composite compression curve. This is shown in Fig. 5 (curve 2). Further-
more, applying ¢.1) to the matrix and composite deformation curves, we find the wire compression curve
(Fig. 5, curve 3).

By using {4.1) the compression curve of a composite with a given armature content can be obtained,
Knowledge of the compression curve rapidly yields the dependence of the critical stability stress on the pa-
rameter I/h. The computed curves obtained are superposed in Fig. 4 by solid lines. As is seen, the experi-
mental points for the bending buckling mode agree well with the appropriate computed curves,

5. Now, let us turn to the shear buckling mode. The shape of the samples (Fig. 3b) suggests the path
of analysis here. As is ordinarily done, let us examine a plane composite model. Let us consider the arma-
ture to be linearly elastic with modulus E £ and the matrix to be ideally plastic with yield point ¢y,. Letus
determine the energy of uniform axial compression (Fig. 7a). For sufficiently high mean stresses ¢ in the
composite (o'>>o-m) it will be

52
szml (5.1)

per unit cross-sectional area.

* Let us note that the electron microscope investigation of the Al—Fe composite in [4] does not disclose the
influence of bonding on the dislocation structure of the deformed aluminum matrix,
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Assuming a possible shape of the elastic line of the sample as shown in Fig, 7Tbwithfour plastic hinges
in the armature and plastic shears o " =¢ of the matrix in the rectilinear portions of length ] of the com-
posite, and with unloaded vertical "linkages" of the sample, let us write the energy of this state in the form

U,=s,go,,V (5.2)
The work of the localized strain in the plastic hinges is not taken into account in (5.2).
Considering the transition from the first state into the second to occur without a change in the spacing
between the sample endfaces, we have

] A

= Ep; 4(sin s @)

and assuming Uy =U,, we obtain the critical shear angle

¢
% =275 "m (5.3)

The expression obtained is valid only for small ¢; it shows that for each sufficiently large stress gov-
erned by the external load, there exists a "broken-line" state with break angle ¢, in addition to the funda-
mental rectilinear state. But for ¢ <¢, the energy of the broken-line state will be greater than the energy
of the rectilinear state, i.e., it is necessary to overcome some potential barrier for the shear buckling mode.
In other words, the sample cannot take the broken-line mode without a jolt from outside.

Growth of the initial sample imperfections can be such a jolt. Let the rod have the elastic line

Yo = % (1 - cos 273: ) (5.4)

in the initial state, where a, is a small deflection at x=Y,1.

Following the usual procedure of integrating the longitudinal bending equations, we easily arrive at
the dependence of the additional deflection function y(x) on the external load ¢

I TR
y= 1—06/6x sin® =y

Here ¢ is given by (2.1). Furthermore, neglecting the initial curvature of the rod we obtain that for
stresses gy, the maximum angle of rotation of the rod at x=1/4 1, X= 3/4 1 turns out to be the critical angle
¢4 for the same stress
1 S

St o —
O S I Nl ¢

P

Ok

Ons _ [Hi g0 b S L}“ (5.5)

If the magnitude of the initial imperfection a,/h is assumed constant for a given batch of the samples,
then the deviation of the dependence of the critical stress ¢, , from the curve computed by means of the bend-
ing mode will be greatest in the domain of low values of }/h. As vy grows this deviation will also increase.
This is in qualitative agreement with the test results presented in Fig. 3. The value of gy/h which results
in quantities gy,/o, obtained in test is ~ 0.05; this probably does not differ too much from real values of the
effective initial imperfection.

The values of the critical stresses for the bending and shear buckling modes agree within the spread
of the test data if the ratio I/h is sufficiently large. Hence, the actual buckling mode can be determined by
peculiarities of the experiment, and certainly, by discrepancies between the model and the real material,
For example, if the endfaces of the compressed sample are fastened in screws, then rigid framing is con-
served for larger deflections and the shear buckling mode is developed for larger 1/h. Shear in the sample
endfaces under compression is apparently a distorted end effect of the shear buckling mode,

The authors are grateful to V. P. Gryaznov for assistance in preparing the samples.
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