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Resul ts  a re  p resen ted  of an exper imenta l  invest igat ion of a s ing le -d i rec t iona l  f ibrous  com-  
posi te  under  c o m p r e s s i o n  in the bonding direct ion.  The buckling modes  a r e  detected: the cus-  
t o m a r y  bending and a s h e a r  mode which holds Yor compara t ive ly  low sample  f lexibi l i t ies .  

1. An exper imenta l  de te rmina t ion  of the mechan ica l  p r o p e r t i e s  of m a t e r i a l s  under  compres s ion  has 
a number  of pecu l ia r i t i es  which s o m e t i m e s  make  obtaining re l iab le  r e su l t s  difficult.  F i r s t ly ,  the c o m p a r a -  
t ively  shor t  working length of the sample  makes  the s t r e s s  s ta te  f a r  f r o m  uniform, and m e a s u r e m e n t  of the 
d i sp lacements  l e s s  re l iable  than in the case  of tension.  An inc rease  in the working length r e su l t s  in sample  
buckling. Additional pecu l ia r i t i e s  can appea r  in the c o m p r e s s i o n  of f ibrous  m a t e r i a l s .  

F i r s t ly ,  the buckling of the s y s t e m  of bonding f ibe r s  in the m a t r i x  is poss ible .  An energy stabil i ty 
c r i t e r ion  is applied in [1] to a plane model  of a composi te ,  and it is shown that fo r  low a r m a t u r e  concent ra -  
tions, buckling of the s y s t e m  of r igid bounding planes  is energe t ica l ly  suitable such that  any two adjacent  
p lanes  buckle out of phase,  t e n s i o n - c o m p r e s s i o n  in a di rect ion perpendicu la r  to the fundamental  c o m p r e s -  
sion is  imposed  on the fundamental  s t r e s s  state of the mat r ix .  As the pe rcen tage  of bonding inc reases ,  buck-  
ling of the bonding s y s t e m  in one phase  becomes  m o r e  favorable ,  hence, s h e a r  is imposed on the fundamen-  
tal  s ta te  of the mat r ix .  P rac t i ca l ly  the same resu l t  has  been obtained in [2] by using a stat ic  c r i te r ion .  The 
cophasal  buckling mode should apparent ly  be more  cha rac t e r i s t i c  for  o rd inary  combinat ions  of the p r o p e r -  
t ies  of the components  and the magni tudes of the volume f rac t ions  of the a r m a t u r e .  An expres s ion  for  the 
c r i t i ca l  s t r e s s  in the bonding e lement  has been obtained for  this case  in [1, 2], 

G m 
~,' = - -  ( 1 . 1 )  

V]~ m 

where G is the shea r  modulus and v the volume f rac t ion  of the component.  (Here and below the subscr ip t  f 
r e f e r s  to the a r m a t u r e ,  the subsc r ip t  m and the double p r i m e  to the mat r ix ,  while the quantit ies without sub-  
s c r ip t s  o r  p r i m e s  a re  a v e r a g e s  r e f e r r i n g  to the composi te  a s  a whole.) 

No r igorous  exper imen ta l  ve r i f i ca t ion  of (1.1) has  apparent ly  been made  since recons t ruc t ion  of the 
t e s t  model  and conditions used  in the t e s t  in [1, 2] is  difficult. A compar i son  between the exper imenta l  r e -  
sui ts  in [3] and (1.1) is not just if ied since the s t r e s s e s  it yields  s imply  cannot be rea l i zed  by the a r m a t u r e  
used  in [3]. The tes t  conditions of a luminum samples  bonded with a s ta in less  wi re  and the buckling mode 
obse rved  in [4] a r e  not pe r fec t ly  c lear ,  and the au thors '  in te rpre ta t ion  of the i r  r e su l t s  is a r b i t r a r y  to a s ig-  
nificant degree .  

Secondly, growth of the initial  imperfec t ions  of the a r m a t u r e  [5] occurs  under  compress ion ,  which r e -  
sul ts  in a diminution of the effect ive e las t ic  modulus of the composi te .  

The main  idea used  in the expe r imen t s  following below is that the s amples  in the c o m p r e s s i o n  t e s t s  
should be cons idered  as  a ce r t a in  s t ruc ture .  But it is  expedient to va ry  some s t ruc tu ra l  p a r a m e t e r  in study- 
ing the s t ruc ture ,  the flexibility, say,  in the case  of a c o m p r e s s e d  rod. As will  be shown below, this  will r e -  
sult  in a na tura l  de terminat ion  of the ma te r i a l .  

2. Severa l  y e a r s  ago, Yu. N. Rabotnov e x p r e s s e d  the idea about the expediency of de te rmin ing  the tan-  
gential  modulus  of a m a t e r i a l  under  c o m p r e s s i o n  f r o m  expe r imen t s  on the stabil i ty of rods.  Indeed, exper i -  
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ments yield critical loads close to the quantities obtained by 
the tangential modulus formula [6]. Therefore, compression 

testing rods of diverse flexibility under fixed support conditions 
and then determining the tangent modulus as a function of the 
stress can reproduce the strain curve under compression when 
the dependence obtained is integrated. The degree of corre- 
spondence between this (r-r curve and the true compression 
curve will be the same as the degree of correspondence be- 
tween the tangential modular load and the actual critical load 
of the compressed rod. But it should be noted that using the 
compression characteristics of the material requires namely 
its tangent modulus in many cases, and numerical differentia- 
tion of the experimental ~-r dependence is, as a rule, fraught 
with great errors. 

Thus, a homogeneous (or quasi-homogeneous) rod of 
length I is compressed by an increasing stress ft. According 
to Shanley, the rod buckling will occur at the stress 

( ~ i  \ 2  ( E  - -  do ~, = ~ )  ,~ ~ ~ -  ~ j  (2 .1 )  

H e r e  i i s  t he  m i n i m a l  r a d i u s  o f  i n e r t i a  of  a r o d  s e c t i o n ,  

# i s  a c o e f f i c i e n t  d e p e n d e n t  on  the  r o d  s u p p o r t  c o n d i t i o n s ,  and  
E k i s  the  t a n g e n t i a l  m o d u l u s  o f  t h e  r o d  m a t e r i a l  at  the  s t r e s s  

o ' , .  

Rigid framing of.the rod with small deviations from the rectilinear can be realized comparatively eas- 
ily in experiment by compressing the sample with flat endfaees perpendicular to its axis between plane-par- 
allel slabs. 

Indeed, a d= 16.84 mm diameter bar of DI6T was compressed in this manner in preliminary tests. If 
the elastic modulus is taken as E =7.1.103 kg/mm 2, then the values of # obtained in the first two rows of the 
table can be considered to correspond to rigid framing (# = 0.5). Values of the tangent modulus Ek, taking 
into account p = 0.5, are determined in the last column of this table. After interpolation and integration, the 
compression curve (Fig.'l) of the tested duraluminum, whose yield point under tension is ,-~ 55 kg/mm 2, is 
constructed from these data. (The dashes are given in the table since the tangent modulus is known to be 
less than the elastic modulus in the appropriate lines.) 

3. The subject investigated herein is an aluminum-stainless steel wire composite. Aluminum A5 
aluminum foil was used as matrix, and chromium-nickel wire* of the armature had a 0.ii ram diameter 
and tension yield point of ~ 240 kg/mm 2. The method of producing the composite was by diffusion welding 

in a vacuum. The welding regime was 525~ temperature, 3 kg/mm 2 pressure for 30 rain, and a vacuura on . 
the order of 5" 10 -5 torr. After the original wire had been heated in the welding regime its strength dropped 
negligibly and was N 230 kg/mm 2. The billet under welding was obtained by winding the wire on a layer of 
foil, where the relationships between the wire diameter, the foil spacing, and thickness were selected for a 
given bonding percentage vf so as to obtain a uniform, almost hexagonal armature distribution in cross sec- 
tion. Examples of the wire distributions obtained in the composite cross sections are shown in Fig. 2a (for 
a volume fraction vf = 0.095) and in Fig. 2b (vf = 0.440). The dimensions of the card obtained after welding 
were 2 • 35 • i00 ram 3. 

The samples were cut on an electric spark tool with subsequent careful grinding of the side surfaces 
and endfaees in order to assure their mutu31 perpendicularity. The average size of a sample cross section 
was 2 • 6 ram 2. The ratio I/h of the length to the thickness of the samples varied between 4 and 50. The 
samples were tested on a ZD-40 machine with a ~ 2 kg/mm 2. sec loading rate. 

4. Three buckling modes were observed. The ordinary bending mode is characteristic for samples 
with high flexibility (Fig. 3a). As the flexibility decreases, the nature of the buckling changes, the sample 

* The wire was obtained from the laboratory of the A. A. Klekovkin Belorets Metallurgical Combine. 
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snaps with the formation of steps in whose zone shear occurs in the material of the ma- 
trix (Fig. 3b). The shear is localized at the sample enfaee (Fig. 3c) in still shorter sam- 
pies. 

The dependence of the critical stress if. on the parameter I/h which characterizes 
the sample flexibility, is presented in Fig. 4. The points I, 2, 3 in Fig. 4a correspond 
to the volume fractions vf = 0, 0.095, and 0.305. The points 4, 5, 6 in Fig. 4b correspond 
to the volume fractions 0:058, 0.215, and 0.440. The open circles refer to the bending 
buckling mode, the dark circles to the shear mode, and the lined circles to shear at the 
Chef[aces. The passage from the bending mode to the shear mode occurs for greater val- 
ues of I/h, the smaller the magnitude of the volume fraction yr. 

Let us first examine just those results which refer to the bending buckling mode. 
Assuming the sample quasi-uniform, let us consider (2.1) to be valid. Let us also as- 
sume that the strain curve of the composite in that section where there are still no lo- 
calized zones of the kind shown in Figs. 4b and c is obtained by the simple rule of mix- 
tures, i.e., 

a = ~'v s + a"v~ (4.1) 

where cr' and e" are functions of the strains e =e' =e,r, characteristic for the fiber and matrix under uniaxial 
loading. This means that the influence of normal stresses is not taken into account here in planes perpen- 
dicular to the sample axis, which are on the order of the square of the difference between the Poisson ratios 
of the components [7], and the influence of the armature on the plastic properties of the matrix, noted in [8], 
for example,* is neglected. The first assumption is justified by the smallness of the corrections obtained, 
as is illustrated by calculations of the appropriate elastic moduli. The second assumption apparently does 
not roughen the real picture since the diameter of the bonding fibers is sufficiently large in this case, in 
contrast to [8]. 

Now, using (2.1) and the data presented in Fig. 3, let us construct the dependence of E~ i onthe stresses 
for the matrix. Letus take E =7.1 �9 103 kg/mm 2 as the elastic modulus of the matrix (the point (r= 0). Inte- 
grating 

dE 

we find the strain curve of the matrix under compression (Fig. 5, curve i). Furthermore, in these same 
E~i-ff coordinates, let us superpose experimental points for the composite vf = 0.095 (Fig. 6). We deter- 
mine the initial part of the curve (solid line) by means of (4.1) by taking the fnatrix compression curve ob- 
tained and an elastic wire with the modulus E = 2.1.104 kg/mm 2. Starting with cr = 8 kg/mm 2, let us integrate 
numerically and reproduce the composite compression curve. This is shown in Fig. 5 (curve 2). Further- 
more, applying (4.1) to the matrix and composite deformation curves, we find the wire compression curve 
(Fig. 5, curve 3). 

By using (4.1) the compression curve of a composite with a given armature content can be obtained. 
Knowledge of the compression curve rapidly yields the dependence of the critical stability stress on the pa- 
rameter I/h. The computed curves obtained are superposed in Fig. 4 by solid lines. As is seen, the experi- 
mental points for the bending buckling mode agree well with the appropriate computed curves. 

5. Now, let us turn to the shear buckling mode. The shape of the samples (Fig. 3b) suggests the path 
of analysis here. As is ordinarily done, let us examine a plane composite model. Let us consider the arma- 
ture to be linearly elastic with modulus El, and the matrix to be ideally plastic with yield point fire" Let us 
determine the energy of uniform axial compression (Fig. 7a). For sufficiently high mean stresses r in the 
compos i t e  (cr>>~m) it  wi l l  be  

(5 2 

u1 = ~ t (5.1) 

per unit cross-sectional area. 

* Let us note that the electron microscope investigation of the AI-Fe composite in [4] does not disclose the 
influence of bonding on the dislocation structure of the deformed aluminum matrix. 
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Assuming  a poss ib le  shape of the e las t ic  line of the sample  as shown in Fig. 7bwi th fou rp l a s t i c  hinges 
in the a r m a t u r e  and plas t ic  s hea r s  7"  = go of the ma t r i x  in the r ec t i l i nea r  por t ions  of length I of the com-  
posi te ,  and with unloaded ve r t i ca l  " l inkages"  of the sample ,  let us wri te  the energy  of this s tate  in the f o r m  

u~ = %~(pv m r (5.2) 

The work  of the local ized s t r a i n  in the p las t ic  hinges is  not taken into account  in (5.2). 

Consider ing the t rans i t ion  f r o m  the f i r s t  s ta te  into the second to occur  without a change in the spacing 
between the sample  endfaces,  we have 

6 1 
l" --  Elv i  4 (sin 112 (p)2 

and assuming  U t = U2, we obtain the c r i t i ca l  shea r  angle 

6 m 
~, = 2 --C- v~ (5.3) 

The express ion  obtained is valid only fo r  small go; it  shows that fo r  each sufficiently l a rge  s t r e s s  gov-  
erned by the external  load, there  exis ts  a "broken- l ine"  s ta te  with b r e a k  angle go, in addition to the funda- 
menta l  r ec t i l i nea r  s tate.  But for  go ego, the energy  of the b roken- l ine  s ta te  will be g r e a t e r  than the energy 
of the r ec t i l i nea r  state,  i.e., it is  n e c e s s a r y  to ove rcome  some potential  b a r r i e r  for  the shea r  bueldingmode.  
In o ther  words ,  the sample  cannot take the b roken- l ine  mode without a jolt  f r o m  outside. 

Growth of the initial  sample  imper fec t ions  can be such a jolt. Let the rod have the e las t ic  line 

a0 I 2~x y 0 = ~ -  i - r  ] (5.4) 

in the initial state,  where  a 0 is  a smal l  deflection at  x=i/21. 

Following the usual  p rocedure  of integrat ing the longitudinal bending equations, we easi ly  a r r i v e  at  
the dependence of the additional deflect ion function y(x) on the externa l  load (r 

a0 ~x Y-- t - - ~ / ~ ,  sin2-/- 

Here  ~ ,  i s  given by (2.1). F u r t h e r m o r e ,  neglect ing the init ial  cu rva tu re  of the rod we obtain that for  
s t r e s s e s  (r** the m a x i m u m  angle of ro ta t ion  of the rod at  x=  1/4 /, x= 8/a l turns  out to be the c r i t i ca l  angle 
go, for  the s ame  s t r e s s  

d-~x x~'Al ao t %n =~r T t--~**/6,  -~qD*=2~--~, Vm 

The rod goes  over  into the b roken- l ine  s tate  for  a s t r e s s  (r** such that 

z*-~-* = [  t +  z r z .  2 ao h h  l Zm % vmt ]-1 (5.5) 

If the magnitude of the initial  imper fec t ion  a0/h is a s sumed  constant for  a given batch of the samples ,  
then the deviation of the dependence of the c r i t i ca l  s t r e s s  (r** f r o m  the curve  computed by means  of the bend- 
ing mode will be g r e a t e s t  in the domain of low values  of 1/h. As  v f  grows this deviat ion will a l so  inc rease .  
This  is  in qualitative ag reemen t  with the t e s t  r e su l t s  p resen ted  in Fig. 3. The value of a0/h which resu l t s  
in quanti t ies ~** /~ ,  obtained in t e s t  is ~ 0.05; this probably  does not differ  too much  f r o m  rea l  values  of the 
effective initial imperfect ion.  

The va lues  of the c r i t i ca l  s t r e s s e s  for  the bending and shea r  buckling modes  agree  within the sp read  
of the t es t  data if the rat io  l /h  is sufficiently large .  Hence, the actual  buckling mode can be de te rmined  by 
pecu l ia r i t i e s  of the exper iment ,  and cer ta inly,  by d i sc repanc ies  between the model  and the r ea l  ma te r i a l .  
F o r  example ,  if  the endfaces  of the c o m p r e s s e d  sample  a re  fastened in sc rews ,  then r igid f r aming  is con- 
se rved  fo r  l a r g e r  deflect ions and the shea r  buckling mode is developed for  l a r g e r  1 / h .  Shear  in the sample  
endfaces  under  c o m p r e s s i o n  is apparent ly  a d i s tor ted  end effect  of the shea r  buckling mode. 

The authors  a re  gra te fu l  to V. P. Gryaznov fo r  a s s i s t a n c e  in p repa r ing  the samples .  
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